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ABSTRACT

Emerging many numbers of data-intensive applicatibat needs to access ever-increasing data seisgarom
gigabytes to terabytes or even petabytes, placemaandd on employing parallel processing technigque®ptimize
performance and reduce the decision time. Of latalfel computing frameworks such as MapReduceitdpen source
implementation Apache Hadoop has been used toarge lscaledata-intensive applications and condchadysis, but data
locality have not been taken into account in Hadang MapReduce and they use random data distributiethod for
load balancing. Practically in many data-intensapplications data groups often accessed to gattteoaly subset of a
whole data set are frequently used. Ignoring dataumging issue and random data placement noticeadulyce the
performance of MapReduce and Hadoop. This papeepts architecture and implementation status aof apiimal data
placement framework that dynamically analyzes dat®sses from system log files and create optiatal groupings and
distribute the data evenly to achieve maximum pelisin per data group and significantly improve® thverall

performance of MapReduce for data-intensive apiptina.
KEYWORDS: Data-Intensive, Data Placement, Hadoop, Map RedRamllel Processing
INTRODUCTION

Many Scientific and Engineering applications hagedme data-intensive, hence accessing large amoldéga
which demand on high performance computing appreaédr efficiently processing and analysing largales data sets in
less amount of time. Parallel processing framewanhkd large scale distributed file systems can leel us facilitate
high-performance runs of data-intensive applicatidtarallel computing of data-intensive applicatigmartitions data into
several smaller segments that can be process indeptty in parallel using the same executable apfitin program on

an appropriate computing platform and then reaskentbe results to create the complete output[@hta

The fundamental challenges for computing in dataAsive applications are managing and processimsg ev
expanding data sets, significantly combining asgedi data to support practical, timely applicatidnghis regard several
solutions have been employed including the Goog\¢apReduce and Hadoop that is open-source impletientof
MapReduce [4]. In Hadoop, data stored in HDFS fiMdschis a distributed file system that providegthithroughput
access to data and map and reduce functions opmrateThe large files store on HDFS as a serfddarks distributed
over a cluster of data nodes; for the purpose it talerance HDFS can be configured to replicatadHDFS tries to

balance load by placing blocks randomly; it doeistake into account any data characteristics[5].

In particular, HDFS does not provide any meanstate related data on the same set of nodes [MapReduce
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2 Solmaz Vaghri & Mohan K. G

framework two important procedures are Map thafgoers filtering and sorting and Reduce that perforansummary
operation; in this approach jobs process in pdrallesplitting into many map tasks running on npl#i machines in large
scale cluster by assuming the data locally beiogedt This can simplify the complexity of runniregde data processing
functions among several nodes in a cluster; théonaatically handles the gathering of results andrrea single result or

set.

The data locality for current Hadoop and MapRedugglementations is important performance factoeytiise
random data distribution policy based on disk spailability to balance the load, which is verfi@ént when in the
terms of both computing and disk capacity nodes idemtical for heterogeneous environment [6]. Wepkeitally
observed that many data-intensive applications thké benefits from MapReduce and Hadoop systemsdéda
processing havénterest data locality they use only subsets of big data set or oneesuhas been accessed more
frequently than others in such applications [6]c Ewample, in the climate modelling and forecastiiognain [11], some
scientists are only interested in some specifietpariods. As another example in the bioinformatiomain, X and Y
chromosomes of human that are related to the a@ffgisrgender are often analysed together in gemesearch rather than
all the 24 human chromosomes [12]. In summaryntbst affinitive data have high possibility to begessed as a group
by specific domain applications. Here we can defime ‘data grouping to represent the possibility of two or more data
blocks to be accessed as a group in Hadoop and &thme. In the other hand possibility for two datacks that
accessed together for many times is high, to besaed as a group in later [7].

Each data group is quantified by a weight whichathing but the number of the times that the ditzady have
been accessed as a group. In MapReduce prograrouvigivenly distributing grouping data, some mapgasight be
scheduled on the nodes that can remotely accese#ted data, or they are scheduled on the dalanpaiodes but have
to wait in the queue. These map tasks are not maiththe locality of data and significantly reduttee MapReduce
program performance. Figure 1 shows this scentr@grouping data are distributed by random distiiim strategy, the
shaded map tasks have remote data access or quimlagthat are the performance barriers; wherett®ese data are

evenly distributed, the MapReduce program can atrade problem [7].

nodel node2 node3 node4

@B  riepwaning in the queue

data locality

Map witl
a) The random data placement may cluster
Map with data locality interested data blocks

- Block of interest
[]  Ermpty block
nodel node2 node3 noded
I . I . B . [

b)Ewvenly data distribution of data groups

Figure 1: Simple Case Showing the Efficiency of DatPlacement for MapReduce

Evenly data distribution across the nodes by randata placement is affected by several factoraidinl, the
number of replica for each data block in each iaddadoop cluster; the large number of replicarttere map tasks can

be run simultaneously and maximum parallelism caadhieved.

Impact Factor (JCC): 3.1323 Index Copernicus Value (ICV): 3.0
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Another important factor is number of simultanetasks which are equal to number of similar datahis case
very large number leads to achieving maximum palfath because each node can have one copy of rd#te icluster.
As last factor we can consider the data groupirggsg pattern that affects evenly distribution ofd@m data placement

strategy.

However in practice, the default replication fad®B which means that a block is stored on thegmate data
nodes; and default number of simultaneous task® avkich is very small [7]. Moreover, the data grmg has not been
considered in default Hadoop and MapReduce, resules nonoptimal data placement strategy for thea-tfgensive
applications having interest data locality. In tetsdy, we develop an Optimal Data Placement FrameWOPDF) to
address above mentioned problem. Generally OPDOfesggned to dynamically scrutinize system log filed extracts
optimal data grouping and re-balance data to aehmaximum parallelism per group; the framework @ens data

reorganization before MapReduce program and bassterformance by rebalancing the load acrossitiges.
MOTIVATION

Data is an important parameter to take any busidestsions and to carry out scientific researchc&iMassive
amounts of data are generating every day in vanétgomains; this lead to ever increasing use @élf computing
techniques, thus optimal data placement is criicalrder to meet their performance requiremenfsla@ data parallel
processing techniques like Hadoop and MapRedudesthploy random data distribution policy for loadldncing have
been used, for data analysis and gain insights ftomthis approach by developing a framework whigses the local

interest by scanning the system logs, we cansyeegrbcess of analysis.
SYSTEM ARCHITECTURE

In OPDF, the technique of identifying frequentlycassed groups based on the weights of data groupk/és
the following steps [7]:

» History data access graph to scan system evemnd@btains the data grouping information.
» A data grouping matrix to generate the optimizeth dmoupings and assign the grouping weights ta gadups.
* An optimal data placement algorithm to create theneal data placement.

History Data Access Graph

History Data Access Graph (HDAG) can be obtainedheyhistory of data accesses and describes widctks
of data accessed among the files. The system legwrds every system operation and shows which filege been
accessed. By monitoring the files access pattereryetwo frequently accessed files can be categdrin one group.
Although we need a simple traversal of system Itgtd learn data grouping information, in practize will face long
traversal latency since the log files could be huge overcome this problem, we define checkpoiatitlicate how far

the HDAG needs to traverse back in the logs.
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Tasks Data of interest d1 t L - - ] = &
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Figure 2: Example Showing the HDAG

Figure2 shows an example of HDAG: By considering ttMapReduce tasks atown ir above table t1 accesses
di, d2, d3, d6, d7, d8, here d is data block. tsses d2, d3, d4, d7, d9 and t3 accesses d15d@6dd7 d8. [7] Th
accessing information initially generated from tbg files is shown as Fure 2(a) Therefor we can eas translate this
information into the HDAG shown as lure 2(b) that will be used to generate DGM in the ret&p

Data Grouping Matrix

The Data grouping matrix (DGM) shows the relati@tveen every two data blocks and can be generaiset]
on HDAG. Based on the same example as shown iure 2, we can build the DGM as shown in ure 3 (stepl and
step2). DGM is N by N matrix where N is number afalblocks in HDAG and each element of DGM represgrouping
weight between two data block. Every Dg; can be calculated by counting the tasks in commewden task sets fi
blocks i and j. The elements in the diagonal shbe iumber of jobs that have used the data bloc&h Eata blocl
belonging to group A may belong to group B at thens time theifore the grouping weight in the DGM shows “h
likely” one data should be grouped with anotheafigi

After obtaining the DGM in Fiure 3, we need to use matrix clustering techniquesdomthe most related de
in step3. Specifically, Bond Energy Alrithm (BEA) [9] is used to create clustered datauging matrix (CDGM) fron
DGM. We can apply BEA for the purpose of groupiragious types of machinery by their functions; is leen widel

used in distributed database systems for the ebpgrtitior of large tables and matrix clustering we

According to the frequencies of access of datakslowe adapt the BEA to decide the components plane
We use DGM which is N by N symmetric matrix, whassvs and columns identify the N dateock and each array

elements the frequency access between the two blockseatdrresponding row and colur

Data grouping r

natrix(DGM Groupl

M)
dITd2[d3[daldsTd6[ 7] d8] dod10 *
dif 2] 2 ol1)1212131(0}1 6 212 2 41 111 Sub-
d2]| 2 1(2]3]1 1 7 Matrix(OSM)
d3l 1 ol1]o[1 0 |step3 212 0 0 for OPDA
d4l 0 0]0 0 2 0 0
d5 0 0|0 3 o 10
6] 2 4] 0 1 0 0]0] O
d7 3 1 1 5 4] 0]0] O
dg 1 00 1 0|0 9]0 0|01 o101
di t1t3 dol o1 110]0 01110 1 1]11]1]0JOoJO0J1] O
d2 t1,t2,t3 1d1ji1jlojlo]af7d 01011 411 ololi1lojolilol 1
d3 TLt2
d4 [3 stepd
ds 13 tef
dé t1,t3 1{1jlofo]JoO 1l1/o0jojo
d7 t1,t2,t3 i1l1lojojo i1l1/o0jojlo
dg Group Ojoj1f1}1 0lOJ1]oOJ1
d9 OloJl1l1]l0 0]l]0J0J1}0
di10 olojolol1 Olol1]o]1

Figure 3: Example Showing the Grouping Matrix and the Overall Flow to Cluster
Data Based on their Grouping Weight

Since we have a symmetric matrix, we need onlyrit & row (or column) permutation that createssinenges
"bond energy' by driving the larger array elemeogether. Thiss achieved by calculating the measure of effectags
(ME) for each permutation by [9]:

Impact Factor (JCC): 3.1323 Index Copernicus Value (ICV): 3.(
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ME=YY ¥ Fi,j(Fi,j — 1+ Fi,j + 1)

Where F; is the frequency calling between blocks i and jeThaximum ME for permutation represents a
desirable component placement. Since our matrsyiismetric, the algorithm can operate on either rowsolumns and

generate the same result as described below. Giwdata blocks, assuming to operate on rows:

» Create an N by N symmetric matriritMatrix= [F; ] such that F;= F, ;. is the frequency calling between

components i and j &), and F;is an integer larger than the maximal value ofrtiagrix elements.
» Seti=1; Select a row arbitrarily (say, the firatv) from Init Matrix to be placed in a new matrix

» Place individually each of the remaining N —i roiwseach of i +1 possible positions, and computehaaev's
contribution to the ME. Place the row in the pasitthat gives the largest incremental ME. Set i=ahtl repeat

this step if i< N.

» The rows of the resulting new matrix (here CDGMjegthe relative positions of the program componethis

BEA algorithm clusters the most affinitive dataetiter indicating which data should be evenly distied [9].

In our example, after group 1 is generated we epeat the steps in step 4 and step 5 to genemtgrolp 2.
In this case, group 1 and group 2 represent higtbted data sets. Assuming there are 5 Data Niodé® cluster, the
CDGM in Figure 3 indicates data {6, 7, 2, 1, 3}dgp 1) and {4, 9, 5, 10, 8} (group 2) should berdyalistributed when
placed on the 5 nodes. Note that we have only &€egiof data in our example, after knowing that#&, 1, 3} should be
placed as a group (horizontally), it is naturairest the left data {4, 9, 5, 10, 8} as anothermugrcHence, step 4 and step 5
in Figure 3 are not necessary for our case, bunwhe number of remaining data (after recognizimg first group) is

larger than the number of nodes [7].
Optimal Data Placement Algorithm

We cannot achieve the optimal data placement arxinmian level of parallelism, knowing the data groups

solely. Here we use OPDA [7] in order to optimallgicing data among the nodes in Cluster.
Algorithm: OPDA M[n][n]
/lInput — Sub-matrix OSM, which include the grogwsl their weights
/[Output — Matrix indicating optimal group placemen
For each row from M[n][n]do
R = index of the current row;
Find the minimum value V in this row;
Put this value and its corresponding column indext€ a seMin Set; MinSet = C1, V1, C2, V2,
If there is only one tuple (C1, V1) in MinS&en
DP[O][R]=R;

DP[1][R]=C1;
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Mark C1 as invalid, Continue;
end if

for each column Ci from MinSeto

Calculate Sum[i] = sum (M[*][Ci])
Items in Ci column;

end for

Choose the largest value from array;
C=index of the chosen Sum item;
DP [O][R]=R;
DP [1][R]=C;

Mark column is invalid (already assigned);

end for

Given the same example from Figure 3, random placémf each group, as shown in Figure 4 (1); tash@
task 3 can only run on 4 nodes rather than 5 wisiclot optimal[7]. By considering the horizontalationships among the
data in DGM, this cannot be optimal. So it is neeeg to make sure the blocks on the same noderhaimal chance to

be in the same group (vertical relationships).

In order to obtain this information, we make use@anfODPA algorithm to complete our OPDF design. @0
based on submatrix for ODPA (OSM) from CDGM. OSMiaates the dependencies among the data alreadgopénd
the ones being placed. For example, the OSM inrEigQudenotes the vertical relations between twéeifit groups
(group 1:6, 7, 2, 1, 3 and group 2:4, 9, 5, 10,T8ke the OSM from Figure 3 as an example, The ORBRArithm starts

from the first row in OSM, whose row index is 6.

Because there is only one minimum value 0 in col@we assign DP [6] = {6, 9}, which means datan@ &
should be placed on the same data node becausbeléast relevant data to 6. When checking rothéte are five equal
minimum values, which means any of these five dagaequally related on data 7. To choose the optiaraidate among
these five candidates, we need to examine therdgncies to other already placed data, whichriegmeed by the FOR
loop calculating the sum for these five columnsolm case sum [8]=5, is the largest value; by plga@ with 7 on the
same node, we can, to the maximum extent, redecpdbsibility of assigning it onto another relatieda block. Hence, a
new tuple {7, 8} is added to DP.

Impact Factor (JCC): 3.1323 Index Copernicus Value (ICV): 3.0
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nodel | node2 | noded | noded | nodeS nodel | node? | node? | noded | nodeS
db a7 dl a2 43 d6 d7 dl d? @3
d4 9 d5 a0 | d8 9 d8 il {10 (i}
tasks | requireddata | involved nodes tasks | requireddata | involved nodes
1| dld2,d3,d6d7.d8 12345 11| did2d3.d6d7,d8 12345
0 | ddddd | 1245 0 | dodidddrdd 12345
3 | dl,d2d5,d6,d7,d10 1245 13 | d1,d2,d5,d6,d7,d10 12345
non optimal optimal

Figure 4: Shows without OPDA Non-Optimal Data the Layout Generated in CDGNV

After doing the same processes to rows with index 1, 2, 3, we have a DP= {(6,9) (7(8¢4) (3,5) (2,10)}
indicating the data should be placed as showngure 4 (2). Clearly, all the tasks can achieve the ogtiparallelism ir
all 5 data nodes when running on the optimal dayaut. With the help of ODPA, OPDF can achieve the twolgx

maximize the parallel distribution of the groupitiata, and balance the overall storage | [7].

The OPDF is designed to increeMapReduceerformance for the applications showing interesality. In cas¢
of applications that do not have interest localily,the data on the cluster belongs to the sarmapgyrTherefore the de
grouping matrix contains the same grouping weiginteach pir of data (except for the diagonal numbers); tHeAE
algorithm will not cluster the matrix, all the ddtbocks will stay on the nodes and distributedresdefault random da
distribution[7][8]. Because all the data are equalbpular, theoreticallyandom data distribution can evenly balance tl
onto the nodes. In this case, OPDF has the sarf@mance as random data distribution stra[7].

IMPLEMENTATION STATUS

In this section we presenbmparison of the impe of random data placement on iMapReduce programs and
proposed framework’s reorganized data. We emplyickdveloped a program performing data reorgaronagiccording tc
the ODPA,; In order to verify the system’s feastljiliwe constructed te bed nodes bgmploying an open sourceoud;
using CPU > 2 GHZ, HDD >300GB and RAM >2GB for dgofation, as well as Apache Tomcat 7.0 as serne
MySql 5.5 database.

The data partitioned intless tha 64MB blocks and upload to the framework; the sysexploited log file anc
conducted analysis on data. Following figshows the traces of two runs on OPDF’s reorganiadd ancMapReduce
randomly placed data, respectively.

120

----- Map (OPDF)

00 +—r-—o-ooi - —————————————— e Map (random)
— | el eeeemeRRT Reduce (OPDF)
-B—-z— 80" Reduce (random)
S 60 P
= o<
£ 40 | el
o i
o &

20 + ="
l..‘
-
0 20 40 60 80 100 120 140 160

TimelLine

Figure 5: The MapReduce Program Statistic for OPDF and Random Placement Metho
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The number of reducers is set large to avoid pevdmice bottleneck. The Map when using OPDF hashfiais

42.2% earlier than random method and the overalbpeance of system improved by 46.6% in comparisth random

data placement method.

CONCLUSIONS AND FUTURE WORK

The default random data placement in a MapRedud®btaframework does not take into account datapingu

semantics. This could create clustering of manyged data into a small number of nodes, which léadisnited level of

parallelism and performance bottleneck. In ordesdive the problem, an optimal data placement freonk is developed.

OPDF captures runtime data grouping patterns aslilglites the grouped data as evenly as possillereTare three

phases in OPDF: learning data grouping informatfmm system logs, clustering the data-grouping ixatand

reorganizing the grouping data.

The proposed placement algorithm in the OPDF archite uses the idea of grouping weights for amalys

The algorithm follows “highest weight first” strafg as rule of thumb for data placement. Howeverofograting system

scheduling, algorithms that following “lowest wetdhist”, “first come first serve” and “shortest agzed group first” can

be used to decrease the number of large data clsemkgor analysis ; thereby increasing the peréore of the analysis

and using the system resources to the fullest andrgte business specific data for decision madirfigster rates.
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